Spectra of mantle shear wave velocity structure

نویسندگان

  • Huw Davies
  • Olafur Gudmundsson
  • R. W. Clayton
چکیده

We applied the stochastic method of Gudmundsson, Davies & Clayton (1990) (which was applied to ISC P-wave data) to teleseismic ISC S-wave data to obtain an independent estimate of mantle structure. We inverted the variance of S-wave traveltime residuals of bundles of rays to obtain a description of the spectrum of lateral heterogeneity as a function of depth through the mantle. The technique yields robust estimates of the traveltime scattering power (the product of a characteristic scalelength of heterogeneity and the mean square of slowness perturbations). We can estimate the characteristic scalelength (half-width), from the autocovariance; which can be reconstructed from the spectra. Hence by division, we can estimate the root mean square slowness. By extrapolating the variance of bundles of rays to bundles of zero cross-sectional area we can also estimate the scale-incoherent signal (which is a plausible estimate of the noise in the data), which is removed from the data. We find that most of the structure generating shear wave traveltime residuals is located in the uppermost mantle. About half of the structure is short scale (harmonic degree l >50). The large-scale structure (f <50) has a half-width of about 500 km in the upper half of the mantle. This S-wave half-width is consistent with the P-wave half-widths determined by Gudmundsson et al. (1990). The S-wave half-width in the lower half of the mantle is poorly constrained. It varies from 500 to 3000 km, which spans the better constrained value of 1200 km found by Gudmundsson et al. (1990) for ?-waves. The incoherent scatter suggests that the signal-to-noise ratio of the S-wave data set is around 1.5. Assuming that the compressional and shear wave velocity variations are correlated then the signal weighted value of the ratio dIn (V,.)/ dIn (Vp) is =2, as also found in normal mode studies. This is much larger than the value of =0.8-1.4 suggested by laboratory experiments undertaken at atmospheric pressure. There is no evidence of periodicity in the traveltime autocovariance; this suggests little or no periodicity in the underlying convection. The short half-width through most of the mantle suggests high Rayleigh number convection, with its attendant small-scale structures. The power decreases by an order of magnitude or more in going from the upper mantle to the lower mantle, the same as found by Gudmundsson et al. (1990) for ?-waves. This large difference suggests either a change in convective regime and/or a difference in the temperature sensitivity of elastic constants in both layers. The increased short-scale structure at the top of the mantle suggests that a large part of the seismic signature at this boundary is compositional, since one would expect a red spectrum for a thermal boundary layer. The derived spectra between l = 10 and l = 50 are similar in shape to spectra from the mantle convection simulations of Glatzmaier (1988) with a Rayleigh number of 10-10 , which would suggest layered convection, if the comparison is valid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global variation of body‐wave attenuation in the upper mantle from teleseismic P wave and S wave spectra

[1] We constrain the spatial variation of P‐wave (tP*) and S‐wave (tS*) attenuation by inverting 190,000 teleseismic P‐ and S‐wave spectra up to 0.8 Hz. These spectra are derived from 250 deep earthquakes recorded at 880 broadband global and regional network stations. The variance and ratios of tP* and tS* values are consistent with PREM’s upper mantle velocity and Q structures and conventional...

متن کامل

A multistep approach for joint modeling of surface wave dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula

[1] We present a multiple step procedure for joint modeling of surface wave group velocity dispersion curves and teleseismic receiver functions for lithospheric velocity structure. The method relies on an initial grid search for a simple crustal structure, followed by a formal iterative inversion, an additional grid search for shear wave velocity in the mantle, and finally, forward modeling of ...

متن کامل

Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography∗

We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green’’s functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We t...

متن کامل

Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis

[1] We investigate the lithospheric and upper mantle shear wave velocity structure and the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Lo...

متن کامل

Shear - Velocity Heterogeneities in the Upper Mantle

Long-period surface waves are used to map lateral heterogeneities of velocity and anisotropy in the upper mantle. The dispersion curves are expanded in spherical harmonics up to degree 6 and inverted to find the depth structure. The data are corrected for the effect of surface layers and both Love and Rayleigh waves are used. Shear wave velocity and shear polarization anisotropy can be resolved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006